
3D打印金属粉末的制备方法
发布时间:
2023-01-04
金属3D打印零件的质量好坏很大程度取决于金属原材料的性能,金属增材制造的原料主要有粉末和丝材两种,其中,以粉末材料的应用较为广泛,例如,激光金属沉积和选区激光熔化等快速成形制造工艺普遍采用金属粉体材料作为原材料。目前增材制造领域常用的金属粉末粒度范围为15~53μm(细粉)...
金属3D打印零件的质量好坏很大程度取决于金属原材料的性能,金属增材制造的原料主要有粉末和丝材两种,其中,以粉末材料的应用较为广泛,例如,激光金属沉积和选区激光熔化等快速成形制造工艺普遍采用金属粉体材料作为原材料。目前增材制造领域常用的金属粉末粒度范围为15~53μm(细粉)、53~150μm(粗粉)。
增材制造金属粉末的选用一般基于三种因素:能量热源、粉末补给方式、产品尺寸和精密度需求。
目前,3D打印(增材制造)专用金属粉末制备方法主要包括雾化法(以气雾化为主,包括真空气雾化(VIGA)和电极感应雾化(EIGA)等)和等离子法(等离子旋转电极雾化(PREP)、等离子熔丝雾化(WPA)和等离子球化技术(PA)等)
①气雾化:
气体雾化是制造高质量金属3D打印粉末的最常用方法。示意图如下,该法利用高速气流(高速空气、氮气、氦气或氩气)将液态金属流击碎形成小液滴,随后快速冷凝得到成形粉末。与水雾化主要区别于雾化介质的改变,目前气雾化生产的粉末约占世界粉末总产量的30%~50%;该方法制备的金属粉末粉末粒径<
150μm、球形度较好、纯度高、氧含量低、成形速度快、环境污染小等优点,该类技术适用于绝大多数金属及合金粉末的生产。
传统意义上的气雾化法指的是真空气雾化制粉技术(VIGA),其工作原理是采用坩埚加热熔炼金属原材,熔炼金属受重力作用在坩埚底部喷嘴处形成液流,随后以高速惰性气流(主要为氩气)在真空下将其击碎为细小液滴,继而冷凝成形,液滴在飞行中受表面张力自凝固成球形或近球形颗粒。
为了防止坩埚与金属原材的接触导致熔炼过程中引入杂质,德国莱宝公司发明了一种称为电极感应熔融气雾化法(EIGA),该技术原理是采用成形的棒材为电极,使其在高频感应电圈中不断熔化,在重力的作用下金属液流经雾化器中心孔,在高速气流冲击雾化后得到金属粉末。改法摆脱粉体受器皿污染,可获得到高纯度金属粉末。
②旋转电极法
旋转电极法是以金属或合金为自耗电极,其端面受电弧加热而熔融为液体,并在电极高速旋转的离心力的作用下,将液体抛出并粉碎为细小液滴,继之冷凝为粉末的制粉方法。
3D打印金属粉末的制备方法
它在熔融和雾化金属过程中完全避免了造渣和与耐火材料接触,消除了非金属夹杂物污染源,可生产高洁净度的粉末。典型的旋转电极制粉设备是由一个直径达2m多的箱体组成,旋转自耗电极通过动密封轴承装入其中,电极长轴水平地处于箱体中心线位置,电极旋转速度高达15000~25000r/min。为了避免钨污染,可在钨电极处改用等离子炬,称为等离子旋转电极雾化制粉法(PREP)。
该技术可通过调节等离子弧电流的大小和自耗电极转速来调控粉末的粒径,提高特定粒径粉末的收得率,有益于制备高球形度、高致密度、低孔隙率、低氧含量、表面光洁的球形粉末,且基本不存在空心粉、卫星粉,有效减少增材制造技术生产过程中的球化、团聚及引入杂质元素而带来的气孔、开裂现象。
③等离子熔丝雾化
等离子熔丝雾化工艺术以规定尺寸的金属丝材为原材料,通过送丝系统按照特定速率送入雾化炉内,经出口处环形等离子体火炬加热装置,在聚焦等离子弧的作用下进行熔融雾化,最终得到金属粉末。
相关新闻

手机扫一扫
福州赛瑞特新材料技术开发有限公司
地址:福州市福清市阳下街道东田村691号联东U谷·福清融侨经开三创中心13号、15号楼
手机:13799982018 (陈昌波)
邮箱: ccb@ceravite.com.cn
电话: 0591-83709236
传真: 0591-83709236